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Abstract: Traditional fault interpretation mainly relies on human-machine interaction, which has low efficiency and high 

human uncertainty. Coherence attribute is sensitive to the discontinuity characteristics of seismic data and can effectively identify 

high grade faults. The coherence algorithm has undergone three innovations: cross-correlation (C1), similarity (C2), and 

eigenstructure (C3). In addition to coherence, attributes such as curvature, dip angle, and ant tracking have been proposed, and 

the likelihood attribute has developed rapidly in recent years, which can accurately reflect larger fault structures and has certain 

discrimination ability for small faults. However, due to the small moment and short extension length of low grade faults, they do 

not necessarily exhibit discontinuous characteristics at the fault location (especially for strike-slip faults), and the traditional 

attributes have not achieved good results in identifying small-scale faults. With the development of artificial intelligence 

algorithms in the field of target detection, advanced neural networks have proven to surpass traditional attributes in identifying 

faults from seismic data. This article takes the BD1 area of the Sichuan Basin as an example and combines fault enhancement 

interpretive processing such as dip scanning, structure-guided filtering, edge-preserving filtering, and frequeency filtering with 

artificial intelligence algorithms and transfer learning techniques for low grade fault identification research, forming a precise 

and reasonable artificial intelligence low grade fault identification technology process. The results show that the artificial 

intelligence algorithm using a large sample library can identify low grade faults that cannot be detected by traditional methods, 

and the fault detection results of artificial intelligence are superior to traditional attributes in terms of noise resistance, accuracy, 

and computational efficiency. 
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1. Introduction 

Seismic fault interpretation is a key task in establishing the 

Earth's reservoir model, and high-precision, high-efficiency, 

and high-resolution fault identification results are important 

guarantees for accurate geological structure interpretation. 

However, how to accurately and efficiently identify faults 

from seismic data has become a major challenge, especially 

the identification of low-grade faults has become one of the 

key technologies in high-resolution 3D seismic interpretation. 

Currently, the conventional methods for fault identification 

and characterization mainly rely on attribute extraction 

techniques such as coherence (C1, C2, C3) [1-3], curvature 

[4-7]
,
 ant tracking [8-9]

,
 and maximum likelihood volume 

(likelihood) [10-11]. Additionally, various attributes are 

further combined, such as multi-information and 

multi-attribute fusion identification techniques that 

incorporate frequency, azimuth, and other information [12]. 

These techniques have become relatively mature, but there are 

still issues with low accuracy in fault characterization and low 
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efficiency in identification, making it difficult to meet the 

requirements for fine characterization in exploration and 

development objectives. 

Low-order faults have small fault slip and short extension 

length, and their positions may not exhibit discontinuous 

features (especially for strike-slip faults). Traditional methods 

face significant challenges in identifying low-order faults. In 

recent years, with the rapid development of science and 

technology, artificial intelligence [13-14] and machine 

learning techniques [15-16] have been widely applied in 

various disciplines. With the advancement of artificial 

intelligence algorithms in the field of object detection, 

applying artificial intelligence algorithms for fault 

identification has achieved good results and made significant 

progress in improving fault interpretation efficiency, reducing 

subjective interpretation, and enhancing automated seismic 

fault interpretation. It has been proven that it surpasses 

traditional attributes in identifying faults from seismic data. 

To address the challenge of identifying low-order faults and 

strike-slip faults with small fault slip and short extension 

length, this study combines fault enhancement interpretation 

techniques such as dip scanning, structure-guided filtering, 

edge-preserving filtering, and band-pass filtering with 

artificial intelligence algorithms and transfer learning 

techniques [17] for low-order fault identification research. 

This approach forms a refined and rational workflow for 

artificial intelligence-based low-order fault identification. The 

results show that using artificial intelligence algorithms with a 

large sample database can identify low-order faults that 

traditional methods fail to detect. The artificial intelligence 

fault detection results surpass traditional attributes in terms of 

continuity, noise resistance, accuracy, and computational 

efficiency. Additionally, by introducing transfer learning 

strategies and training the network with a small amount of 

manually labeled seismic data samples, the network can learn 

more actual fault features. The transfer learning identification 

results effectively reduce cases of missed detection and 

misidentification, thereby improving the accuracy and 

reliability of low-order fault identification. 

2. Research on Artificial Intelligence 

Fault Interpretation Technology 

2.1. Fault Enhancement Interpretation Processing 

During the acquisition and processing stages of seismic data, 

various factors can lead to low signal-to-noise ratio and poor 

imaging quality, resulting in fuzzy fault information in the 

seismic data. This hinders the detection and identification of 

faults, thus affecting the accuracy of seismic data 

interpretation. Therefore, it is necessary to use fault 

enhancement techniques to reduce noise and enhance the 

signal of faults in seismic data, making the fault depiction 

clearer. Subsequently, the enhanced faults can be detected and 

identified to improve the accuracy of seismic data 

interpretation. The workflow is illustrated in Figure 1. 

 

Figure 1. Fault Enhancement Interpretation Processing Flowchart. 

This study mainly combines methods such as dip scanning, 

structure-guided filtering, edge-preserving filtering, and 

Frequency division filtering, and iteratively optimizes them 

multiple times to enhance the response characteristics of fault 

seismic data. This improves the ability to identify faults and 

reduces interpretation ambiguity. 

Dip scanning considers the actual dip and azimuth of the 

geological formation. It tracks and compares along the dip 

direction of the formation reflection to obtain more accurate 

geological target information, resulting in an accurate dip and 

azimuth volume. 

Structure-guided filtering applies anisotropic diffusion 

filtering to seismic data under the control of the dip and 

azimuth volumes. It reduces noise in seismic profiles, 

improves the signal-to-noise ratio of seismic data, and makes 

the faults associated with fault-related synclines or distortions 

more clear and prominent. 

Edge-preserving filtering is a complementary application of 

maximum likelihood attributes. It is a non-linear filter with 

constructed constraints for edge preservation. It removes 

background interference noise while avoiding blurring of 

discontinuous structural features such as faults and geological 

body edges, ensuring the preservation of geological structures 

and sedimentary information. 

 

Figure 2. Comparison profile before and after frequency division filtering. 

Frequency division filtering utilizes spectrum 

decomposition techniques to decompose the full-frequency 

seismic data into multiple frequency bands, thereby obtaining 

geological seismic information contained in different 

frequency ranges. The use of medium to high-frequency data 

can significantly improve the detection capability of 

low-amplitude faults and also has a strong denoising effect. 

Figure 2 shows a comparison profile before and after 

band-pass filtering. The left side of Figure 2 represents the 
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original seismic profile, while the right side represents the 

30-40Hz frequency division profile. From the Figure, it can be 

observed that the low-grade faults are more clearly 

identifiable in the medium to high-frequency data. 

Figure 3 shows a before-and-after comparison of seismic 

data interpretation processing. The left side represents the 

original seismic data, while the right side represents the 

seismic data after fault enhancement processing. From the 

Figure, it can be observed that the seismic data after fault 

enhancement processing has effectively removed noise and 

preserved the seismic response characteristics at fault 

locations. Through fault enhancement techniques, the faults in 

the seismic data are both noise-reduced and signal-enhanced, 

resulting in a clearer depiction of low-amplitude faults. 

 

Figure 3. Comparison of seismic data before and after interpretive processing. 

2.2. Artificial Intelligence Fault Interpretation 

In recent years, with the rapid development of artificial 

intelligence, machine learning and deep learning techniques 

have been increasingly applied in the field of geophysics, and 

various algorithms based on convolutional neural networks 

(CNN) have been used for fault recognition. Chen Gui and Liu 

Yang (2020) summarized the methods of fault recognition 

based on artificial intelligence and conducted a 

comprehensive analysis of the principles and advantages and 

disadvantages of different methods. 

Currently, the mainstream artificial intelligence algorithms 

both domestically and internationally are mainly based on 

convolutional neural networks, such as CNN, fully 

convolutional neural networks (FCN), and deep convolutional 

neural networks (DCN). The U-net and 3D U-net++ 

convolutional neural network models are considered the 

mainstream research methods for automated fault recognition 

due to their high efficiency and accuracy. Figure 4 illustrates 

the mainstream artificial intelligence fault recognition, where 

different methods differ mainly in network structure, 

preprocessing, and post-optimization techniques. 

 

Figure 4. Schematic diagram of artificial intelligence fault recognition. 

The convolutional neural network-based automatic fault 

recognition method consists of the following three core steps: 

The first step is the creation of synthetic seismic records and 

fault labels. The second step is the construction of the 

convolutional neural network architecture. The third step is 

the training and optimization of the convolutional neural 

network. 

Due to the limited availability of trained model samples for 

AI fault recognition or their potential ineffectiveness in 

specific work areas, it is necessary to introduce transfer 

learning to improve the accuracy and reliability of fault 

recognition. By training the convolutional neural network on a 
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large number of synthetic fault samples, and then fine-tuning 

the network using a small number of manually labeled actual 

fault samples, transfer learning enables the network to learn 

more actual fault features. This greatly reduces the occurrence 

of missed detections and false detections, thereby improving 

the accuracy of fault recognition. Figure 5 illustrates the 

workflow of the artificial intelligence fault interpretation 

technique summarized in this study. 

 

Figure 5. Artificial Intelligence Fault Recognition Technology Workflow. 

3. Technical Application Effectiveness 

The Sichuan Basin is characterized by the development of 

strike-slip faults, and numerous drilling activities have shown 

that high-yield gas is often associated with these faults, 

indicating a close relationship between strike-slip faults and 

hydrocarbon accumulation. This study focuses on the BD1 

block to conduct interpretive processing and research on 

low-level sequence fault interpretation using artificial 

intelligence, and to develop an effective and rational workflow 

for artificial intelligence-based strike-slip fault interpretation. 

This aims to improve the accuracy and efficiency of fault 

recognition and provide a favorable basis for target selection. 

Comparing the results of fault recognition between artificial 

intelligence and traditional methods in the target layer of the 

study area (Figure 6), it can be observed that traditional 

attributes (coherence, curvature, maximum likelihood) can 

indicate the location of faults to some extent. However, certain 

fault locations in seismic data may not exhibit discontinuous 

features, making it difficult for traditional methods to obtain 

clear and continuous fault detection results. Artificial 

intelligence-based fault detection results surpass all traditional 

attributes in terms of continuity, noise resistance, accuracy, 

resolution, and computational efficiency. 

Artificial intelligence technology demonstrates significant 

advantages in profile fault imaging, subtle fault imaging, and 

deep noise resistance. 

 

Figure 6. Comparison between Artificial Intelligence Fault Recognition and Traditional Fault Recognition Methods. 
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a. Coherence attributes          b. Artificial intelligence fault probability volume 

Figure 7. Comparison between Traditional Coherence Attribute Plane and Artificial Intelligence Fault Recognition. 

Figure 7 shows the comparison between the artificial 

intelligence fault probability volume (Figure 7a) and the 

coherence attribute (Figure 7b) for the basement boundary of 

the Cambrian system. From the Figure, it can be observed that 

artificial intelligence technology has significant advantages 

over traditional methods in terms of profile fault imaging, 

subtle fault imaging, and deep noise resistance. The AI fault 

interpretation exhibits clearer spatial distribution 

characteristics and better combination relationships. 

Figure 8 compares the results of artificial intelligence fault 

recognition using a dataset of 100,000 samples and a dataset 

of 1,200 samples. It can be seen from the figure that the larger 

sample dataset enables higher precision imaging of faults, 

resulting in more accurate and reasonable fault recognition 

compared to using a smaller sample dataset. 

By establishing discriminative criteria based on artificial 

intelligence parameters, multiple scales of faults can be 

characterized. Figure 9 shows the results of multi-scale fault 

recognition. In the Figure, the red color corresponds to 

large-scale faults, black represents medium-scale faults, and 

blue represents small-scale faults. After completing the 

artificial intelligence fault interpretation, the fault attribute 

volume is optimized, and automatic extraction of fault planes 

is performed according to the requirements of different scale 

geological targets. 

 

Figure 8. Comparison of Artificial Intelligence Fault Recognition Results from Different Models. 
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Figure 9. Artificial Intelligence Multi-scale Fault Classification and Characterization. 

4. Conclusions 

The combination of methods such as dip scanning, 

structure-guided filtering, edge-preserving filtering, and 

band-pass filtering is necessary for the artificial 

intelligence-based low-rank fault identification in seismic data. 

It can enhance the fault features, improve the signal-to-noise 

ratio of seismic data, and optimize the dominant frequency 

band for small faults, thereby further improving the ability to 

identify small faults. 

Low-rank faults and strike-slip faults have small 

displacements and short extensions, making them difficult to 

identify using traditional attributes such as coherence, curvature, 

ant tracking, and maximum likelihood attributes due to noise 

interference. However, artificial intelligence fault interpretation 

techniques can quickly and effectively characterize the spatial 

distribution characteristics of low-rank faults, significantly 

improving the accuracy and efficiency of fault interpretation. 

The difficulty in obtaining a large number of fault samples 

for artificial intelligence networks makes it challenging for 

prediction models to meet the recognition requirements of 

different types of faults. Therefore, it is necessary to introduce 

transfer learning strategies and incorporate actual fault 

samples to enable the network to learn more real fault features. 

The application results have shown that the network after 

transfer learning can significantly reduce cases of missed and 

misidentified faults, thereby improving the accuracy of fault 

recognition. 

The key to improving the accuracy of artificial 

intelligence-based low-rank fault identification lies not only in 

the model itself but also in the sufficiency, uniform 

distribution, and representativeness of the samples. These 

factors need to be taken into account and given due attention. 
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