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Abstract: The main characteristics of a dynamical system are determined by the bifurcation theory. In particular, in this
paper we examined the properties of the discrete dynamical system of a two coupled maps, i.e. the maps with an invariant
unidimensional submanifold. The study of coupled chaotic systems shows rich and complex dynamic behaviors, particularly
through structures of bifurcations or chaotic synchronization. A bifurcation is a qualitative change of the system behavior under
the influence of control parameters. This change may correspond to the disppearance or appearance of new singularities or
a change in the nature of singularities. We can define different kinds of bifurcations for fixed points and period two cycles
as, saddle-node, period doubling, transcritical or pitchfork bifurcations. The study of the sequence of bifurcations permits to
understand the mechanisms that lead to chaos. The phenomena of synchronization and antisynchronization in coupled chaotic
systems is very important because its applications in several areas, such as secure communication or biology. In this paper,
we study bifurcation properties of a two-dimensional coupled map T with three parameters. The first objective is to locate the
bifurcation curves and their evolution in the parametric plane (a, b), when a third parameter c varies. The equations of some
bifurcation curves are given analytically; cusp points and co-dimension two points on these bifurcation curves are determined.
The second is related to the study of the chaotic synchronization and antisynchronization in the phase space (x, y).
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1. Introduction

Many studies have been devoted to coupled maps those
last years. One of the major interest of their study is to
understand their dynamical behavior and more particularly
the way how synchronization phenomena can occur. Indeed,
coupled systems may exhibit synchronized chaotic motion
on an invariant subspace of the whole phase space [7, 8,
19]. The synchronization and antisynchronization of coupled
chaotic oscillators have a variety of applications, particularly
in connection with secure communication [5, 11] or biology.
In this paper we consider a family of two-dimensional maps
generated by the coupling of two one-dimensional maps

including sine functions. We propose to extend the study
proposed in [12] regarding the bifurcations and phenomena of
synchronization and antisynchronization.

We consider a map of the following form:

Xn+1 = T (Xn), X = (x, y) ∈ R2, Λ = (a, b, c) ∈ R3 (1)

To understand the evolution of the dynamics of the map (1),
we study the cycles of period k of T , that means k consecutive
points X1, ...Xk satisfying T (Xi) = Xi+1, i = 1, ...k − 1,
T (Xk) = X1, Xi = T k(Xi), Xi 6= T l(Xi), i = 1, ...k,
1 ≤ l < k, l, k integers.

In the case of a differentiable and of class C(1) one-
dimensional map, a cycle possesses what is called a multiplier
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S, which is defined as the product of the derivatives of the
map at each point of the cycle. The cycle is said to be stable if
|S| < 1, and unstable if |S| > 1.

In the case of a differentiable and of class C(1) two-
dimensional map, a cycle has two multipliers S1 and S2, which
are the eigenvalues of the jacobian matrixDT k(X) of the map
T k at one point of the cycle. The calculation of S1 and S2 is
used to find the stability of the cycle:

1. a cycle is a saddle when S1 and S2 are real, |S1| < 1,
|S2| > 1;

2. a cycle is a node when S1 and S2 are real, stable (or
attracting) if |Si| < 1 (i = 1, 2), unstable (or repulsing)
if |Si| > 1 (i = 1, 2).

In this paper, we do not consider the case of complex
eigenvalues.

When S1 = +1 or S2 = +1, a saddle-node (fold) or
transcritical or pitchfork bifurcation can occur:

1. saddle-node (or fold) bifurcation: two period k cycles
appear at the bifurcation value, one is a node, the other
is a saddle. We are more interested in the case of the
appearance of a stable node.

2. transcritical bifurcation: the same number of period k
cycles exists before and after the bifurcation value, but
two period k cycles exchange their stability.

3. pitchfork bifurcation: one period k cycle changes its
stability at the bifurcation value and gives birth to

two symmetric period k cycles, which have the same
stability as the original cycle before the bifurcation.

The equations permitting to obtain the curves corresponding
to a bifurcation with Si = +1, i = 1 or 2 are given
below [3]. First, let us define d = det(DT k(X)) + 1 and
N = trace(DT k(X)), and let the polynomyal of the Jacobian
matrix DT k(X), given by P (S) = S2 −NS + d = 0 be the
characteristic of ∂T k(X)∂X . then we have:{

T k(X) = X
d−N = 0

(2)

When S1 = −1 or S2 = −1, a flip (period doubling)
bifurcation occurs:

1. flip bifurcation: one period k cycle changes its stability
at the bifurcation value and gives birth to one period 2k
cycle, which has the same stability as the period k cycle
before the bifurcation.

The equations permitting to obtain the curves corresponding
to a flip bifurcation are the following [3]:{

T k(X) = X
d+N = 0

(3)

Such equations can be solved analytically or numerically
using for instance a Newton-Raphson method.

In this paper is analyzed the dynamics of the map T , related
to a coupling between one-dimensional maps fa given below:

T :

{
xn+1 = F (xn, yn) = fa(xn) + (1− c)bg(xn, yn),
yn+1 = G(xn, yn) = fa(yn) + bg(yn, xn),

(4)

Where xn and yn are state variables at a discrete time n,
with (x, y) ∈ [0, 1]2,
a is the control parameter of the uncoupled 1D map fa:

fa(x) = x+
a

2π
sin(2πx), (5)

b is a coupling parameter between the two subsystems, g is
a coupling function of the form:

g(x, y) =
1

2π
sin(2π(y − x)) (6)

The third parameter c (0 ≤ c ≤ 1) has been introduced in
the map with the aim to better understand the dynamics of the
map, more particularly the structure of bifurcations, when the
coupling between the one-dimensional maps is symmetrical or
not symmetrical. For a given value of c, bifurcation curves in
the (a, b) parameter plane can be obtained using Eq. (2) and
Eq. (3). A locus of bifurcations (S1 = +1) is a fold bifurcation
curve denoted Λj(k)0 , a locus of bifurcations (S1 = −1) is a flip

bifurcation curve denoted Λjk [14-18].
In this paper we also consider the following types of

codimension two singularities:

1. cusp points of fold bifurcation curves, corresponding to
fold codimension two singularities denoted Cjk.

2. tangential points of a flip curve and a fold curve (S1 =
−S2 = +1) denoted NPi, i is the number of the point.

Such points are related to the occurrence of the second
condition both in eq. (2) and eq. (3), which thus lead to [4]:

N = d = 0. (7)

The plan of the paper is as follows. In section 2, the
fixed points are calculated and their stability is studied. We
give transcritical, pitchfork and flip bifurcation curves of fixed
points and period two cycles, which are obtained analytically
or numerically. In section 3, we give the bifurcation structures
in the parameter plane (a, b), as their evolution by variation
of the third parameter c. The section 4 is devoted to
synchronization and antisynchronization phenomena.

2. Definition of the Coupled Map

Let us consider the map T, defined as follows:

T :

{
xn+1 = F (xn, yn) = fa(xn) + (1− c)bg(xn, yn),
yn+1 = G(xn, yn) = fa(yn) + bg(yn, xn),

(8)
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Where (x, y) ∈ [0, 1]× [0, 1].
Uncoupled one-dimensional (1D) maps fa given:

fa(x) = x+
a

2π
sin(2πx), (9)

g is a coupling function of the form:

g(x, y) =
1

2π
sin(2π(y − x)). (10)

a is the control parameter of the uncoupled 1D map fa.
b is a coupling parameter between the two subsystems
and c (0 ≤ c ≤ 1) is a parameter tuning the degree of

asymmetry. The case of c = 0 [10, 12, 20, 21] corresponds to a
symmetrical coupling; c = 1 corresponds to an unidirectional
non symmetrical coupling [22, 23, 26].

3. Fixed Points

The fixed points of T verify T (X) = X . First, T has an
infinite number of fixed points whose coordinates are given by
the following equation:

P ∗ = (x∗, y∗) =
1

2
(k, l), k, l ∈ Z (11)

Note that all these fixed points (x∗, y∗) are independent of
the parameters a, b, and c. Their coordinates are different
regarding the parity of k and l.

There are four different types of such points depending on
the parity of the integers (k, l), which appear in Eq. (11).


P ∗1 = (x∗, y∗) = (k, l), (k, l) ∈ Z2,

P ∗2 = (x∗, y∗) = 1
2 (k, l), k = 2k

′
+ 1, l = 2l

′
+ 1,

(k
′
, l

′
) ∈ Z2,

P ∗3 = (x∗, y∗) = ( 1
2k, l), k = 2k

′
+ 1, (k

′
, l) ∈ Z2,

P ∗4 = (x∗, y∗) = (k, 12 l), l = 2l
′
+ 1, (k, l

′
) ∈ Z2.

(12)

We’ll study them in a deeper way in the next paragraph,
which concerns the stability of fixed points.

Moreover, there are eight fixed points dependent of a, b, and
c, which are P1 = (x∗1, y

∗
1), P2 = (y∗1 , x

∗
1), P3 = (x∗2, y

∗
2),

P4 = ( y∗2 , x
∗
2), P5 = (x∗2, y

∗
1), P6 = (y∗1 , x

∗
2), P7 = (y∗2 , x

∗
1),

P8 = (x∗1, y
∗
2).

Let us define:

A =
√
b2(2a2 − b2c2)(c− 2)2 + a2(4b2c− a2) (13)

Then:{
x∗1 = 1

2π arctan( A
2(c−1)ab ,

−a2−b2c(c−2)
2(c−1)ab )

y∗1 = 1
2π arctan( −A

2(c−1)ab ,
−a2−b2c(c−2)

2(c−1)ab )
(14)

{
x∗2 = 1

2π arctan(−Aab ,
a2−b2c(c+2)

ab )

y∗2 = 1
2π arctan( Aab ,

a2−b2c(c+2)
ab )

(15)

with:

arctan(u, v) = −i ln
u+ iv√
u2 + v2

(16)

The fixed points Pi,i = 1, ..., 8 exist, that means that they
have real coordinates values, if (a, b) belongs to the hatched
regions in Figure 1.

For other (a, b) values, fixed points Pi, i = 1, ..., 8 have
complex coordinates or are rejected towards infinity.

Figure 1. Hatched regions in the parameter plane (a, b) correspond to the existence of
real fixed points Pi, i = 1, ..., 8 for c = 1

2 .

3.1. Stability of Fixed Points

To study the stability of fixed points, we need to calculate
the eigenvalues of the Jacobian matrix at these points. The
Jacobian matrix DT of T is a function of the states (x, y):

DT (x, y) =

[
C (1− c)b cos(2π(y − x))

b cos(2π(x− y)) B

]
(17)

with
C = 1 + a cos(2πx)− (1− c)b cos(2π(y − x)) (18)

B = 1 + a cos(2πy)− b cos(2π(x− y)) (19)
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First, we study the stability of the fixed points given by (13) to know their bifurcations.
1. At the fixed points P ∗1 = (x∗, y∗) = (k, l), k, l ∈ Z, the eigenvalues of DT (P ∗1 ) are:

S1 = 1 + a and S2 = 1 + a− 2b+ bc (20)

2. At the fixed points P ∗2 = (x∗, y∗) = 1
2 (k, l), k = 2k

′
+ 1, l = 2l

′
+ 1, (k

′
, l

′
) ∈ Z2, i.e. k, l are odd, the eigenvalues of

DT (P ∗2 ) are:
S1 = 1− a and S2 = 1− a− 2b+ bc (21)

3. At the fixed points P ∗3 = (x∗, y∗) = ( 1
2k, l), k = 2k

′
+ 1, (k

′
, l) ∈ Z2, i.e. k is odd, the eigenvalues of DT (P ∗3 ) are:

S1, 2 = 1 + b− 1

2
bc± 1

2

√
(bc− 2c)2 + 4a(a+ bc) (22)

4. At the fixed points P ∗4 = (x∗, y∗) = (k, 1
2 l), l = 2l

′
+ 1, (k, l

′
) ∈ Z2, i.e. l is odd, the eigenvalues of DT (P ∗4 ) are:

S1, 2 = 1 + b− 1

2
bc± 1

2

√
(bc− 2c)2 − 4a(a+ bc) (23)

Then, we study the stability of fixed points Pi, i = 1, ..., 8 given by Eq. (14) and Eq. (15), whose coordinates depend on
the parameters.

5. At the fixed points Pi, i = 1, ..., 8, the eigenvalues of DT (Pi) are:

S1, 2 =
1

2(c− 1)b
(−b2c2 + 3b2c− 2b2 − 2b+ 2bc±

√
E) (24)

with:

E = (6c4 − 14c3 + 4− 12c+ 17c2 − c5)b4 + (−6c2a2 + 8ca2 − 4a2 + 2c3a2)b2 + a4(1− c) (25)

Figure 2. Existence domaines of attracting fixed points in the parameter plane (a, b) for
c = 0.

Figure 3. Existence domaines of attracting fixed points in the parameter plane (a, b) for
c = 1

2 .

Figure 4. Existence domaines of attracting fixed points in the parameter plane (a, b) for
c = 1.

3.2. Regions of the Stability

Figures 2, 3 and 4 represent the stability areas of these fixed
points for c = 0, c = 1

2 and c = 1 respectively.
1. For c = 0 the fixed points P ∗1 are stable for a ∈]− 2, 0[

and b ∈] 12a, 1 + 1
2a[, P ∗2 are stable for a ∈]0, 2[, b ∈]−

1
2a, 1−

1
2a[, P ∗3 , P ∗4 are unstable whatever be (a, b), and

Pi are stable for a ∈]−2.828, 0[, b ∈]− 1
2 −

1
2

√
1 + a2,

1
2a[ and a ∈]0, 2.828[, b ∈]− 1

2 −
1
2

√
1 + a2,− 1

2a[ (see
Figure 2).

2. For c = 1
2 the fixed points P ∗1 are stable for a ∈]− 2, 0[,

b ∈]0, 4
3 + 2

3a[ and a ∈]−2, 0[, b ∈] 23a, 0[, P ∗2 are stable
for a ∈]0, 2[, b ∈] 43 −

2
3a, 0[, and a ∈]0, 2[, b ∈]−23 a, 0[,

P ∗3 are stable for a ∈]0, 2
3 [, b ∈]− 2a, 2(a2−4)

6−a [ and P ∗4
are stable for a ∈]− 2

3 , 0[, b ∈] 2(a
2−4)

6+a , 0[ (see Figure 3).
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3. For c = 1 the fixed points P ∗1 are stable for a ∈] − 2,
0[, b ∈]a, 2 + a[, P ∗2 are stable for a ∈]0, 2[, b ∈] − a,
2−a[, P ∗3 are stable for a ∈]0, 2[, b ∈]− (2 +a), a[ and
P ∗4 are stable for a ∈] − 2, 0[, b ∈] − (2 − a), a[ (see
Figure 4).

4. Bifurcation Structure
In this section, we present the study of bifurcations in

the parameter plane (a, b), (the parameter c is fixed). A
bifurcation is a qualitative change of the system behavior when
a parameter varies [8, 24, 25, 27]. This change may correspond
to the appearance or disppearance of new singularities, or

a change in the nature of singularities [6]. We can define
different kinds of bifurcations for fixed points and period
two cycles as, saddle-node, period doubling, transcritical or
pitchfork bifurcations [9, 12, 24]. The study of the sequence of
bifurcations permits to understand the mechanisms that lead to
chaos.

Figures 5, 6 and 7 represent the stability domaines obtained
by numerical simulations for the transformation T in the
parameter plane (a, b) for c = 0, c = 1

2 and c = 1, respectively.
Each colored region corresponds to the existence of a stable
periodic orbit with period indicated in the bar on the bottom
of the figure. When b is changed, we can remark that some
stability regions are periodically repeated (Figure 7).

Figure 5. Existence domaines of attracting cycles in the parameter plane (a, b), for the map T when c = 0. Each colored part corresponds to the existence of a stable cycle (periodic
point), the period k (period) of which is given by the upper colored squares. The black color corresponds to the cycles period k ≥ 15 or to chaos.

Figure 6. Existence domaines of attracting cycles in the parameter plane (a, b) for the map T when c = 1
2 .



Applied and Computational Mathematics 2022; 11(1): 18-30 23

Figure 7. Existence domaines of attracting cycles in the parameter plane (a, b) for the map T when c = 1.

4.1. Singular Points of Codimension Two

From Eq. (7), we obtain six singular points whose coordinates are:

NP1 : a = −2, b = 2
c−2 ,

NP2 : a = 2, b = 2
c−2 ,

NP3 : a = −2c
c−2 , b = 2

c−2 ,

NP4 : a = 2c
c−2 , b = 2

c−2 ,

NP5 : a = 0, b = −2
c−2 ,

NP6 : a = 0, b = 2
c−2

(26)

4.2. Bifurcation Curves

We can also obtain analytically some bifurcation curves for fixed points and period 2 cycles. The equation of a transcritical or
pitchfork bifurcation curve Λj(1)0 for a fixed point of coordinates (x, y) is:

Λj(1)0 : −b cos(2π(x− y)) + a2 cos(2πx) cos(2πy)− a cos(2πx)b cos(2π(x− y))− b cos(2π(x− y))a cos(2πy)

+bc cos(2π(y − x)) + bca cos(2π(y − x)) cos(2πy)+
(1− c)b cos(2π(y − x)) = 0.

(27)

The equation of a flip bifurcation curve Λj
′

1 for a fixed point of coordinates (x, y) is:

Λj
′

1 : −4− 2a cos(2πy) + 3b cos(2π(x+−y))− 2a cos(2πx)
−a2 cos(2πx) cos(2πy) + ab cos(2πx) cos(2π(x− y))
+ab cos(2π(x− y)) cos(2πy)− bc cos(2π(x− y))
−bca cos(2π(x− y)) cos(2πy) + (1− c)b cos(2π(y − x)) = 0.

(28)

Then the equations of transcritical and pitchfork bifurcation curves Λj(1)0 , j = 1, ..., 5 for the fixed points P ∗i , i = 1, ..., 4 are
respectively:

Pitchfork :


P ∗1 : Λ1

(1)0
: b = a

2−c
P ∗2 : Λ2

(1)0
: b = a

c−2
P ∗3 : Λ3

(1)0
: b = −ac

P ∗4 : Λ4
(1)0

: b = a
c

Transcritical :
{
P ∗i , i = 1, ..., 4 : Λ5

(1)0
: a = 0

(29)
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The Λj(1)0 , j = 1, ..., 4 are a pitchfork bifurcation curves for
the fixed points P ∗i , i = 1, ..., 4 respectively.

Transcritical bifurcation curve Λ5
(1)0

is related to the four
points P ∗i , i = 1, ..., 4.

The equations of flip bifurcations curves Λj1, j = 1, ..., 6 for
fixed points P ∗i , i = 1, ..., 4 are respectively:

Flip bifurcations :



P ∗1 :

{
Λ1
1 : b = a+2

2−c
Λ5
1 : a = −2,

P ∗2 :

{
Λ2
1 : b = a−2

c−2
Λ6
1 : a = 2,

P ∗3 : Λ3
1 : b = a2−4

−4+2c+ca ,

P ∗4 : Λ4
1 : b = a2−4

4−2c+ca

(30)

The presence of a transcritical bifurcation has important
consequences for the dynamics of the system (4), it is a
special case of a bifurcation (Si = +1, i = 1 or 2). At
the bifurcation point the fixed points exchange their stability.
Beyond the bifurcation point the number of fixed points has not
changed contrary to a fold bifurcation where two fixed points
appear or disappear. Pitchfork bifurcations are also possible
in the dynamics of the system (4), pitchfork bifurcations
are the generic bifurcations when such a symmetric fixed
point changes its stability. Two fixed points with a broken
symmetry bifurcate at once in a pitchfork bifurcation. Both are
either stable (supercritical pitchfork bifurcation) or unstable
(subcritical pitchfork bifurcation).

In this paper, we present the transcritical and pitchfork
bifurcations (stable and unstable) in the parameter plane (a,
b) for 0 ≤ c ≤ 1.

We have plotted the flip, transcritical and pitchfork
bifurcation curves of fixed points, the singularity points NPi,
i = 1, ..., 6 and the flip and fold bifurcation curves of the
period 2 cycles in the parameter plane (a, b) for the following
three cases, c = 0 (symmetrical coupling), 0 < c < 1
(non-symmetrical coupling), c = 1 (non-symmetrical and
unidirectional coupling).

Case 1: c = 0
From Eq. (29) and Eq. (30), we analytically obtain

the parametric equations of transcritical, pitchfork and flip
bifurcation curves of fixed points, Λj(1)0 , j = 1, 2, 5, and Λj

′

1 ,
j′ = 1, ..., 6. .

Moreover, we can obtain three more bifurcation curves
related to the fixed points Pi, i = 1, ..., 8:

Λ7
1 : b = − 1

4a
2

Λ8
1 : b = − 1

2 −
1
2

√
1 + a2

Λ9
1 : b = − 1

2 + 1
2

√
1 + a2

(31)

Those equations are only analytically obtained for c = 0,
otherwise, they are too complex to be solved analytically.
From Eq. (26), we obtain the coordinates of codimension two
points. In Figure 8, we can see the bifurcation curves in the
parameter plane (a,b) and the location of the singularity points
NPi, i = 1, ..., 6. Let us remark that NP3 ≡ NP4. Λ1

(1)0
,

Λ2
(1)0

, and Λ5
(1)0

are straight lines passing through (0, 0), the
curves Λ3

(1)0
and Λ4

(1)0
tends to infinity (see Eq. (29)). Flip

bifurcation curves Λ1
1, Λ2

1, Λ5
1, and Λ6

1 corresponding to P ∗1
and P ∗2 are straight lines, Λ3

1 corresponding to the fixed point
P ∗3 and Λ4

1 corresponding to the fixed point P ∗4 are merged
and correspond to a parabola. Curves Λ7

1, Λ8
1, and Λ9

1 for Pi,
i = 1, ..., 8 are also parabolic.

Figures 9 and 10 represent the characteristic bifurcation
curves of period 2 cycles respectively flip and fold. All these
curves have been numerically obtained.

We note that there is a symmetry of the bifurcation curves
for fixed points and period 2 cycles relatively to the b-
axis. Some bifurcation curves correspond to boundaries of
stability domaines given in Figure 5 in the (a,b) plane. Some
bifurcation curves plotted in Figures 2 and 8 limit the stability
domaines of fixed points (blue area in Figure 5) and some
curves plotted in Figures 9 and 10 limit the stability domaines
of period 2 cycles (red areas in Figure 5).

In Figure 11, we present the transcritical and pitchfork
bifurcation curves of fixed points P ∗1 , P ∗2 and Pi, i = 1, ..., 8.
Both before and after the bifurcation, there is one unstable and
one stable fixed point. However, their stability is exchanged
when they collide. So the unstable fixed point becomes stable
and vice versa. Similarly, the Figure 11 shows the existence of
the following bifurcations:

1. Transcritical bifurcation between P ∗1 ↔ P ∗2 to passage
Λ5
(1)0

2. Pitchfork bifurcation (stable and unstable) around P ∗1 to
passage Λ1

(1)0
.

P ∗1 NS(resp.NI)↔ 2NS(resp.2NI) + C (resp.C) (32)

3. Pitchfork bifurcation (stable and unstable) around P ∗2 to
passage Λ2

(1)0
.

P ∗2 NS(resp.NI)↔ 2NS(resp.2NI) + C (resp.C) (33)

P ∗i (NS) denotes a fixed point P ∗i of type stable node, and
P ∗i (NI ) denotes a fixed point P ∗i of type unstable node.

Figure 8. Flip, transcritical and pitchfork bifurcation curves of fixed points for T , when
c = 0.
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Figure 9. Flip bifurcation curves of period 2 cycles, when c = 0.

Figure 10. Fold bifurcation curves of period 2 cycles, when c = 0.

Figure 11. Transcritical and pitchfork bifurcation curves of fixed points for T in the
parameter plane (a, b), when c = 0, obtained from eq. (29).

Case 2: 0 < c < 1
Without loss of generality, we have chosen to study the

curves when c = 1
2 . We also obtain analytically and

numerically the flip, transcritical and pitchfork bifurcation
curves. For fixed points, the equations of fold bifurcation
curves Λj(1)0 , j = 1, ..., 5 are given from Eq. (29) and the

equations of flip bifurcation curves Λj′1 ,j′ = 1, ..., 6 from (30).
The coordinates of points of codimension two are analytically
obtained from Eq. (26).

In the parametric plane (a, b), we represent the transcritical,
pitchfork and flip bifurcation curves of fixed points (see
Figure 12). Λj(1)0 , j = 1, ..., 5, are straight lines passing
through (0, 0). Λ1

1, Λ2
1, Λ5

1, Λ6
1 are also straight lines. Λ3

1,
Λ4
1, Λ

9
1 are parabolic curves. Λ7

1 is a closed curve and Λ8
1 tends

to −∞. In the same figure, we give the locations of points of
codimension two NPi, i = 1, ..., 6.

Figures 13 and 14 represent the bifurcation curves of period
2 cycles respectively flip and fold. Figure 15 represents the
transcritical and pitchfork bifurcation curves corresponding
to this case, we can remark in Figure 15 the following
bifurcations:

1. Transcritical bifurcation between P ∗1 ↔ P ∗2 to passage
Λ5
(1)0

.
2. Transcritical bifurcation between P ∗3 ↔ P ∗4 to passage

Λ5
(1)0

.
3. Pitchfork bifurcation (stable and unstable) around P ∗1 to

passage Λ1
(1)0

.

P ∗1 NS (resp. NI)↔ 2NS (resp. 2NI) + C (resp. C) (34)

4. Pitchfork bifurcation (stable and unstable) around P ∗2 to
passage Λ2

(1)0
.

P ∗2 NS (resp. NI)↔ 2NS (resp. 2NI) + C (resp. C) (35)

5. Pitchfork bifurcation (stable and unstable) around P ∗3 to
passage Λ3

(1)0
.

P ∗3 NS (resp. NI)↔ 2NS (resp. 2NI) + C (resp. C) (36)

6. Pitchfork bifurcation (stable and unstable) around P ∗4 to
passage Λ4

(1)0
.

P ∗4 NS (resp. NI )↔ 2NS (resp. 2NI ) + C (resp. C) (37)

As in the case c = 0, some bifurcation curves correspond
to boundaries of stability domaines given in Figure 6 in the
(a,b) plane. Some bifurcation curves plotted in Figures 3
and 12 limit the stability domaines of fixed points (blue area
in Figure 6) and some curves plotted in Figures 13 and 14
limit the stability domaines of period 2 cycles (red areas in
Figure 6).
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Figure 12. Flip, transcritical and pitchfork bifurcation curves of fixed points for T , when
c = 1

2 .

Figure 13. Flip bifurcation curves of period 2 cycles, when c = 1
2 .

Figure 14. Fold bifurcation curves of period 2 cycles, when c = 1
2 .

Figure 15. Transcritical and pitchfork bifurcation curves of fixed points for T in the
parameter plane (a, b), when c = 1

2 .

Case 3: c = 1
In the case of the non-symmetric and unidirectional

coupling of T , we can also analyze the local bifurcations,
flip, transcritical and pitchfork of fixed points. We obtain
analytically the transcritical, pitchfork and flip bifurcation
curves regarding fixed points from equations Eq. (29) and Eq.
(30). We have plotted these curves in the parametric plane (a,
b) in Figure 17. The bifurcation curves Λ1

(1)0
, Λ2

(1)0
and Λ1

i ,
i = 1, ..., 6 are straight lines. The curve Λ4

(1)0
merges into

Λ1
(1)0

, and Λ3
(1)0

merges into Λ2
(1)0

. We notice the absence of
bifurcation curves Λ7

1, Λ8
1, and Λ9

1, because the fixed points
Pi, i = 3, 4, 8, have complex coordinates, and the points
Pi, i = 1, 2, 5, 6, 7 tend to infinity. The coordinates of
codimension-two points are obtained from Eq. (26) and we
present the location of these points also in Figure 17. Let us
remark that NP1 ≡ NP4 and NP2 ≡ NP3.

Using numerical methods, we have plotted the bifurcation
curves for period 2 cycles in the parameter plane (a, b);
Figures 18 and 19 show, respectively, flip and fold bifurcation
curves. Some bifurcation curves correspond to the boundaries
of stability domaines in the plane (a, b) given in Figure 7.
Some bifurcation curves plotted in Figures 4 and 17 limit
the stability domaines of fixed points (blue area in Figure 7)
and some curves plotted in Figures 18 and 19 limit the
stability domaines of period 2 cycles (red areas in Figure 7).
We can also see that the bifurcation curves of period 2
cycles are repeating periodically. We note that there is a
symmetry of the bifurcation curves for fixed points and period
2 cycles relatively to the coupling parameter b, although the
transformation in this case is non symmetric and the coupling
is unidirectional. Figure 20 shows the transcritical and
pitchfork bifurcation curves of fixed points P ∗i , i = 1, ..., 4.
Where c = 1, only the fixed points P ∗i , i = 1, ..., 4 exist. And
we also have in Figure 20 the following bifurcations:

1. Transcritical bifurcation between P ∗1 ↔ P ∗2 to passage
Λ5
(1)0

.
2. Transcritical bifurcation between P ∗3 ↔ P ∗4 to passage

Λ5
(1)0

.
3. Pitchfork bifurcation (stable and unstable) around P ∗1

and P ∗4 to passage Λ1
(1)0

.
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{
P ∗1 NS (resp. NI )↔ 2NS (resp. 2NI ) + C (resp. C)
P ∗4 NS (resp. NI )↔ 2NS (resp. 2NI ) + C (resp. C) (38)

1. Pitchfork bifurcation (stable and unstable) around P ∗2
and P ∗3 to passage Λ2

(1)0
.

{
P ∗2 NS (resp. NI )↔ 2NS (resp. 2NI ) + C (resp. C)
P ∗3 NS (resp. NI )↔ 2NS (resp. 2NI ) + C (resp. C) (39)

4.3. Evolution of the Flip Bifurcation Curves for Pi When
the Third Parameter c Varies

Now, let us have a look on the evolution of the flip
bifurcation curves Λ7

1, Λ8
1, and Λ9

1 corresponding to the fixed
points Pi, i = 1, ..., 8, for increasing values of the third
parameter c from c = 0 to c = 1, with (a, b) ∈ [−5, 5]2 (see
Figures 16).

The bifurcation value c = 0.0355730 (Figure 16(a))

corresponds to a new contact between Λ7
1 and Λ8

1 at points
α1 and α2. After this bifurcation, when c = 0.0355731
the Λ7

1, Λ8
1 are divided into three curves, a closed curve Λ7

1,
and Λ8

1, Λ8′

1 (Figures 16(b)-(c)). For c = 0.99, we can see
another curve Λ10

1 (Figure 16(d)), which merges into Λ9
1 for

c = 0.99999; these two curves tends to the diagonal b = a and
the antidiagonal b = −a (Figure 16(e)) before disappearing
for c = 1 when merging into the point (0, 0).

We can also see that, numerically, when c approaches 1, the
curves Λ8

1, Λ8′

1 tends to −∞.
We have plotted numerically bifurcation curves for fixed

points and period 2 cycles. Even for these low period, the
bifurcation structure is very rich and complex. So it will
probably be the same for higher period of cycles. We can
remark the good correspondence between the simulations of
Figures 5, 6 and 7 and the bifurcation curves obtained for fixed
points and period 2 cycles. All this study permits to have a
better understanding of the evolution of attractors in the case
of fixed points and period 2 cycles.

Figure 16. Evolution of the bifurcation curves for fixed points Pi, i = 1, ..., 8 in the parametric plane (a, b) for different values of c.
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Figure 17. Flip, transcritical and pitchfork bifurcation curves of fixed points for T , when
c = 1.

Figure 18. Flip bifurcation curves of period 2 cycles, when c = 1.

Figure 19. Fold bifurcation curves of period 2 cycles, when c = 1.

Figure 20. Transcritical and pitchfork bifurcation curves of fixed points for T in the
parameter plane (a, b), when c = 1.

5. Synchronization and
Antisynchronization of Coupled Map

We focus on the dynamics of T restricted to the invariant
diagonal. Let (x, x) ∈ ∆ and (x1, x1) = T (x, x), then
the restriction T/∆ to the diagonal is reduced to the one-
dimensional map fa(x) (as in [12]), when c = 0):

x1 = fa(x) = x+
a

2π
sin(2πx) (40)

For c = 0, leading to y1 = 1 − x1. Let (x, 1 − x) ∈ ∆−1
and (x1, y1) = T (x, 1− x) then the restriction T/∆−1 is:

T/∆−1 :

 x1 = fa(x)− (1− c) b
2π sin(4πx)

y1 = 1− fa(x) + b
2π sin(4πx)

(41)

In Figures 21 and 22, we remark the existence of two
synchronized four-band chaotic attractors, which are indicated
by segments along the main diagonal ∆ and correspond to
synchronization phenomenon. Their basins of attraction (in
cyan and magenta) are standard open sets [1, 2, 13].

Figure 21. Two synchronized four-band chaotic attractors coexist for a = 3.54,
b = 1.6 and c = 0.5. Their basins are coloured in cyan and magenta.



Applied and Computational Mathematics 2022; 11(1): 18-30 29

Figure 22. Enlargment of Figure 21.

6. Summary of Main Results
By varying the third parameter c of the map T, we have got

to know the qualitative behavior of the system (4), and we can
focus on the main results that we have obtained:

1. The transcritical bifurcation curve Λ5
(1)0

: a = 0, always
exists ∀c ∈ [0, 1], ∀x, y ∈ R.

2. The flip bifurcation curves Λ5
1 : a = −2 corresponding

to the fixed point P ∗1 and Λ6
1 : a = 2 corresponding to

the fixed point P ∗2 , always exist ∀c ∈ [0, 1].
3. When c = 0, the fixed points P ∗3 , P

∗
4 are unstable ∀(a,

b) ∈ R2. Λ3
(1)0

and Λ4
(1)0

tend to infinity.
4. When 0 < c < 1, we note the presence of all

transcritical and pitchfork bifurcation curves Λj(1)0 , j =
1, ..., 5.

5. When c = 1, the fixed points Pi, i = 3, 4, 8, have
complex coordinates, and otherPi, i = 1, 2, 5, 6, 7 tends
to infinity, which implies the absence of bifurcations
curves Λ7

1, Λ8
1 and Λ9

1. The curve Λ3
(1)0

merges into
Λ2
(1)0

, and Λ4
(1)0

merges into Λ1
(1)0

.
6. There is a symmetry of the bifurcation curves for fixed

points and order 2 cycles relatively to the b-axis, ∀c ∈ [0,
1].

7. Synchronization phenomenon exists ∀c ∈ [0, 1].
8. Chaotic antisynchronization only exists for c = 0.

7. Conclusion
The bifurcations of the two-dimensional coupled map in

parameter plane (a, b) gives rise to a structure that is very
complex, we have presented here the fold bifurcation curves
(S1 = +1) and the flip bifurcation curves (S1 = −1)
for fixed points and period two cycles. We have studied
the situations of the parametric singularities when S1 =
−S2 = +1. We have also investigated the synchronization and
antisynchronization in two coupled map T with an invariant
diagonal x = y and antidiagonal y = 1− x, respectively. The
results have been obtained via a mixing between analytical and
numerical methods. Results concerning synchronizationand
antisynchronization are very similar to that obtained in [12].

The introduction of a third parameter c has permitted to
better understand the evolution of bifurcation structures and
to generalize synchronization phenomena.
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